
December 2003: Don’t Summarize Regression Sampling Schemes 
with Correlation (Rule 3.2) 
 
Rules of the month are numbered in accordance with the numbering in the 
book. Thus, Rule 1.1 refers to the first rule in Chapter 1. And so on. These 
comments do not repeat the material in the book but highlights and 
amplifies it. A rule is stated as found in the book and then discussed. 
 
“Do not summarize regression sampling schemes with correlations” 
(Rule 3.2) 
 
Further Comments on the Rule 
 
Correlation is a symmetric measure of covariation. To use it in asymmetric 
situations is precarious. Equation 3.7 in the text developed the relationship 
between a correlation estimated from random sampling from a population 
and a correlation obtained by regression. For example, in the first 
situation, randomly sample subjects from a population, measure their 
height and weight and correlate. In the second situation, specify a set of 
heights, randomly sample from the subpopulations with those heights, 
measure their weights and correlate. The relationship between the 
correlations calculated by the two sampling schemes is given by Equation 
3.7 in the text—modified slightly here to improve the notation. Let X be 
the predictor variable and 
 

2
,truexσ = the actual variance of the predictor variable, X, in the population, 

 
2
,regressionxs = the variance of the predictor variable, X, in the regression 

situation, 
 

ρtrue
2 = the true correlation between predictor and dependent variable, 

 
and 
 

rregression
2 = the regression coefficient estimated from the data. 

 
For purposes of this discussion assume that the sample sizes are large so 
that good precision can be obtained.  Then the following relationship is 
derived in the text, 
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Only when the variance in the predictor variable is equal to the variance of 
the predictor in the population is there a valid estimate of the population 
correlation. If the range of the predictor is oversampled (as if often 
deliberately done in regression situations in order to improve precision of 
the estimate of the slope), the sample variance will be larger than the true 
variability and the sample correlation will tend to be larger than the true 
correlation. Table 1 gives some idea of the effect. 
 
Table 1. Effect of sampling on the correlation estimated from regression, 

.  rregression
2

 
True correlation2,  2

trueρ2
truex,

2
regressionx,

σ
s

 

0 0.10 0.20 0.30 0.40 0.50 
0.25 0 0.03 0.06 0.10 0.15 0.20 
0.50 0 0.05 0.11 0.18 0.25 0.33 
1.00 0 0.10 0.20 0.30 0.40 0.50 
2.00 0 0.18 0.33 0.46 0.57 0.67 
4.00 0 0.31 0.50 0.63 0.73 0.80 

 
Table 1 shows that only under two conditions is the population correlation 
estimated correctly in a regression sampling scheme. First, when there is 
no correlation. Second, when the variance of the predictor variable in the 
sample mimics the variance of the predictor in the population. In all other 
cases there is bias. There can be substantial misjudgment. For example, 
suppose that regression sampling was done in such a way that the variance 
of the predictor variable is four times that of the true variability. When the 
true correlation squared is 0.20, the estimate from the sampling is 0.50. 
Thus the claim that the predictor variable “explains 50% of the variability 
in the dependent variable” is off by 250%! An investigator basing sample 
size calculations for a future study assuming random sampling will be 
sorely disappointed if the value of 0.50 is used. 
 
If the population variance of the predictor variable is known, then the 
correlation estimated from the regression situation can be adjusted to give 
an unbiased estimate of the population correlation. 
 
Figure 1 displays the effect graphically. For example If the correlation in 
the population is 0.8 the correlation in the sample is estimated to be about 
0.5 when the sample variance of the predictor variable is one fourth that of 
the population variance. 
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Figure 1. Observed correlation in sample as function of ratio of sample 
variance in predictor variable to true variance of the predictor variable in 
the population. Ratio . Ratios of 4, 2 ,1, 0.50 and 0.25. 2
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Equation (1) can be written in the logit scale, 
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This equation indicates that on the logit scale the 45o line is shifted up or 
down by a quantity that depends on the logarithm of the ratio of the 
variances (or the ratio of the standard deviations since the exponents 
cancel out). Equation (2) also shows that the adjustment is symmetrical 
about the ratio of the sample and population variances. 
 
There are two bottom lines. First, you must know how the sampling was 
done in a situation of covariation. Perhaps the default rule is that there was 
selection of values of one of the variables (regression sampling). Second, 
either disregard the claim of “percent variability explained” or try to 
determine how the variability of the predictor variable in the sample 
corresponds to that in the population from which the sample came.   
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